您现在的位置是: 首页 > 硬件设备 硬件设备
dspic无刷直流电机闭环控制系统设计软硬件_无刷直流电机双闭环控制仿真
tamoadmin 2024-09-05 人已围观
简介1.通过2104和h电桥控制电机遇到的问题2.DSPIC30F中PORTE位为哪个寄存器3.什么是AC驱动电机《电机学》找本有介绍无刷直流电机工作原理的《无刷直流电机控制系统》作者: 夏长亮 (里面有许多控制电路的例子)《永磁无刷直流电机控制技术与应》刘刚//王志强//房建成单片机个人建议学习一下MICCHIP的,比较便宜。《电动机的DSC控制——微芯公司dsPIC应用》王晓明 等编著《dsPIC
1.通过2104和h电桥控制电机遇到的问题
2.DSPIC30F中PORTE位为哪个寄存器
3.什么是AC驱动电机
《电机学》找本有介绍无刷直流电机工作原理的
《无刷直流电机控制系统》作者: 夏长亮 (里面有许多控制电路的例子)
《永磁无刷直流电机控制技术与应》刘刚//王志强//房建成
单片机个人建议学习一下MICCHIP的,比较便宜。
《电动机的DSC控制——微芯公司dsPIC应用》王晓明 等编著
《dsPIC数字信号控制器入门与实战:入门篇》
《dsPIC数字信号控制器 C程序开发及应用 》(内含有一套完整的无刷电机控制程序例子)
通过2104和h电桥控制电机遇到的问题
1、提供软件调试功能。
2、提供丰富的接口器件及其仿真。RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件。
3、提供丰富的虚拟仪器,利用虚拟仪器在仿真过程中可以测量电路的特性,培养实际硬件的调试能力。
4、具有强大的原理图绘制功能。
proteus软件的设置
F8:全部显示当前工作区全部显示;
F6:放大以鼠标为中心放大;
F7:缩小以鼠标为中心缩小;
G:栅格开关栅格网格;
Ctrl+F1:栅格宽度0.1mm显示栅格为0.1mm,在pcb的时候很有用;
F2:显示栅格为0.5mm,在pcb的时候很有用;
F3:显示栅格为1mm,在pcb的时候很有用;
F4:显示栅格为2.5mm,在pcb的时候很有用;
Ctrl+s:打开关闭磁吸磁吸用于对准一些点的,如引脚等等;
x:打开关闭定位坐标显示一个大十字射线;
m:显示单位切换mm和th之间的单位切换,在右下角显示;
o:重新设置原点将鼠标指向的点设为原点。
DSPIC30F中PORTE位为哪个寄存器
控制单相感应电机的三种方法 Padmaraja Yedamale 每一天,工程师们都在设计使用单相感应电机的产品,在大多数电机控制的应用场合中,单相感应电机的转速控制都是令人满意的,因为它不仅能够实现不同的转速,还能够降低功率消耗和噪声。
大多数单相感应电机是单向运行的,这是因为它们在设计时被设为单方向旋转。通过增加额外的线圈、外部继电器和开关,或通过增加齿轮机构,可以改变旋转方向。用基于微控制器的控制系统,可以改变系统的调速范围。除此之外,用不同的电机控制算法,电机的旋转方向也可以被改变。
固定分相电容器式(Permanent Split Capacitor, PSC)电机是单相感应电机中最常见的类型。本文将会讨论三种不同的技术和驱动方式,它们可用于单向或双向控制PSC电机的转速。
PIC 18F2431或dsPIC30F2010的引脚
微控制器界面
微控制器是系统的大脑。通常,电机控制应用中所使用的微控制器具有专门的设备,例如电机控制脉宽调制(PWM)、高速模数转换器(ADC)以及诊断管脚。Microchip公司的PIC18F2431和dsPIC30F2010都内嵌有这些功能。
通过访问微处理器上的专用片内设备,可以使控制算法的执行过程更加简单。
ADC通道可用于测量电机电流、电机温度以及散热片温度(与电源开关相连)。另外ADC通道还可用于读取电位计电平,这个信号之后可用于设置电机转速。其他的ADC通道用于现场级应用,读取不同的传感器数据, 例如接近开关、浊度传感器、水位、冷却器温度等等。
在一项具体应用中,通用I/O接口可以用作开关和显示器的连接接口。例如,在冰箱应用中,这些通用I/O可以用于控制LCD显示器、七位LED显示器、按钮界面等等。通讯通道如I2C 或SPI?用于连接电机控制板和另一个电路板以变换数据。
故障诊断界面包含具有特殊功能的输入线,如能在系统中设置出现灾难性故障时,关闭PWM输出的功能。以洗碗机为例,如果驱动设备由于积聚的废物而阻塞,这就可以阻止电机继续旋转。通过检测电机控制系统中的过载电流就可以判断是否阻塞。用诊断功能,这类故障可以被记录并显示出来,或被传送到修理人员的故障诊断PC中。通常,这可以防止严重失效,并减少产品由于故障带来的停工,进而降低维修成本。
PWM是用于控制电机的主要方式。用上文所述的输入,微控制器的电机控制算法可以计算出PWM的占空系数和输出模式。PWM的最有价值的功能包括具有可编程空载时间的补充通道。PWM信号可以是中间对齐或靠边对齐的。中间对齐的PWM信号具有降低产品电磁噪声(EMI)辐射的优点。
具有三个基本部分的驱动布局方块图。在这种布局中电机只有两个引线(M1和M2)。所示的MCU具有一个PWM模块,它能够输出三对PWM信号,并且各组信号之间具有静区。
方法#1:单方向控制
单方向上的VF(可变频率)控制让驱动布局和控制算法变得相对简单。具体做法是,从一个固定电压和频率的电源(如墙上插座电源)产生一个可变电压和频率的电源。在42页的图显示了这种驱动布局的方块图,它包括前文所讨论的三个基本部分。电机线圈接在输出反相器每个半桥的中心处。市场上很多常见电机的结构是,主线圈和启动线圈连接在一起,同时有一个电容与启动线圈相串联。在这种结构中,电机可能只有两个引线(M1和M2)。
方块图中所示的MCU具有电源控制脉宽调制模块(PCPWM),它能够输出三对PWM信号,并且在各组信号之间具有静区。静区对感应电机控制应用是很有意义的,因为当一组PWM关闭电源开关而另一组开启时,会在直流总线上产生跨导,而静区可以避免这种情况的发生。诊断电路包括电机电流监测、直流总线电压监测,以及对连接在电源开关和电机上的散热片的温度监测。
电机以向前方向和向后方向转动时的相电压
双向控制
大多数PSC电机被设计成单方向运行,然而,很多应用场合需要电机能够在两个方向上旋转。以前,齿轮机构与外部继电器和开关曾被用于获得双向旋转功能。当用机械齿轮机构时,电机轴单方向旋转,而齿轮可通过向前、向后啮合,或脱离啮合,改变电机的旋转方向。当用继电器和开关时,根据所需要的运转方向,改变启动线圈的极性可让电机反向旋转。
在此,我们将会讨论两种用于PSC电机双向速度控制的方法,它们均用基于微控制器的驱动方式。这里介绍的驱动布局可以产生有效电压,能够驱动主线圈和启动线圈,两者之间具有90度的相差,使设计者能够从电路中永久地移除与启动线圈相串联的电容,从而降低了整个系统的成本。
不幸的是,这些方法用的组件会增加系统的成本。
方法#2:H-Bridge反相器
这种方法在输入端有一个倍压器;在输出端,使用H-bridge或双相反相器(见下图)。主线圈和启动线圈的一端被连接至相应的半桥;而它们的另一端连接在一起,连接点是交流电源的中性点,这一点也作为倍压器的中心点。
使用H-bridge 的双向控制
使用三相转换器电桥的控制
控制电路需要编成两对互补的四个PWM信号,并需要在互补输出之间有足够的静区。PWM0-PWM1和PWM2-PWM3是两对具有静区的PWM对。用PWM信号,根据VF图,直流总线合成信号,以90度的相位差供给两组具有可变电压和可变频率的正弦电压信号。如果输出到主线圈的电压以90度的相位滞后于启动线圈,则电机以向前方向运行。如果要改变电机的旋向,供给主线圈的电压相位应当领先于启动线圈。
这种控制PSC电机的H-bridge反相器方法具有以下缺点:
·主线圈和启动线圈具有不同的电路特征。这样,每一个转换器的电流并不平衡,这会导致反相器内的转换设备过早损坏。
·线圈的普通触点直接连接于交流电源的中性点,这可能增加漏入主电源的转换信号,并且可能增加电路噪声。这将会限制产品的EMI(电磁噪声)级别,违反特定的设计目标和规则。
·由于输入电压倍压电路,实际有效直流电压相对偏高。
·最后,由于有两个大功率电容,倍压器本身的成本会较高。
将这些问题减至最小的方法就是使用三相转换器电桥,在下一部分会有所讨论。
方法#3: 使用三相转换器电桥
输入部分被标准二极管桥式整流电路取代,输出部分具有三相转换器电桥。这种方法与前一方案的主要区别在于电机线圈与转换器的连接方式。主线圈和启动线圈的一端分别连接到相应的半桥,而另一端连在一起,之后再与第三个半桥相连。
在这种驱动布局中,控制变得更加有效,然而,控制算法也变得更加复杂。为了在加于主线圈和启动线圈的有效电压之间获得90度的相位差,应当有效控制线圈电压Va、Vb、和Vc。
各个设备具有相同的电压级别,这可以改进设备的利用情况,并能够在一个给定的直流总线电压下获得最大输出电压,为此,所有三个转换器的相电压均被设置为相同的幅值,如下式所示:
| Va | = | Vb | = | Vc |
加于主线圈和启动线圈的有效电压如下:
Vmain = Va-Vc
Vstart = Vb-Vc
通过控制Vc相对于Va和Vb的相角,可以很容易的控制电机的旋转方向。
45页的图表示了相电压Va、Vb和Vc,以及在正向运转和反向运转时分别加于主线圈的有效电压(Vmain)和加于启动线圈的有效电压(Vstart)之间的关系。
对比于前两种方法,用三相转换器电桥的控制方法控制一个300W的压缩机能够节省百分之三十的功耗。
使用三相控制方法的另一个优点在于,可以用相同的驱动硬件布局控制三相感应电机。在这种情况下,微控制器应当被重新编程,将输出正弦电压的相位差设为120度,以驱动三相感应电机。
在电器设备、工业和消费应用中,单相感应电机非常流行。PSC是最常见的单相感应电机。控制电机的转速具有很多优点,例如功率效率高、更低的噪声以及在应用中更易控制。在这篇文章中,我们讨论了在单向和双向运行时控制一个PSC电机的不同方法。用三相电桥布局控制PSC电机的方法效果最佳1
什么是AC驱动电机
DSPIC30F中PORTE位为哪个寄存器
于dsPIC30F2010控制光伏水泵变频器的研究
[日期:2006-11-10] 来源:电源技术应用 作者:贺文涛 丁明 苏建徽 张国荣 [字体:大 中 小]
摘 要:设计了一种基于数字信号控制器(DSC)结构的光伏水泵系统。系统以Mimochip公司最新推出的dsPIC30F2010芯片为核心,用一种实用的最大功率点跟踪(MPPT)控制方式,实现了太阳电池的真正的最大功率跟踪(TMPPT)功能;系统主电路DC/DC部分用结构新颖的推挽正激电路,DC/AC部分用具有完善保护功能的一体化智能功率模块(ASIPM)。实践证明该系统具有体积小,重量轻,运行可靠稳定等特点。
关键词:变频器;太阳能光伏阵列;推挽正激;恒定电压跟踪;最大功率点跟踪:光伏水泵
0 引言
我国西部偏远地区仍有上百万农牧民无电力供应,而且该地区气候干旱,土地荒漠化,草原退化情况越来越严重,用光伏水泵系统合理地开发地下水,对于解决该地区的饮水和农业用水问题,改善生态环境,具有重要意义。而光伏水泵技术的核心是专用变频器的设计,如何设计和太阳电池阵列相匹配,具备太阳电池最大功率点跟踪及光伏水泵系统特有的各种保护功能的变频器,是本文重点。
1 系统组成及工作原理
1.1 光伏水泵系统的结构图
由图1可知,系统利用太阳电池阵列将太阳能直接转变成电能。经过DC/DC升压,和具有TMPPT功能的变频器后输出三相交流电压驱动交流异步电机和水泵负载,完成向水塔储水功能。其中主要包括4部分:太阳电池阵列;具有TMPPT功能的变频器;水泵负载;储水装置。
1.2 变频器主电路及硬件构成
本系统所用的主电路及硬件控制框图如图2所示。主电路DC/DC部分用性能优越的推挽正激式电路进行升压;DC/AC部分用三相桥式逆变电路。主功率器件用ASIPM(一体化智能功率模块)PS12036,系统控制核心由16位数字信号控制器dsPIC30F2010构成。控制电路包括阵列母线电压检测和水位打干检测电路。系统首先通过初始设置的工作方式和PI参数工作,然后由MPPT子程序实时搜索出的电压值作为内环CVT的给定,通过PI调节得到工作频率值,计算出PWM信号的占空比,实现光伏阵列的真正最大功率跟踪(TMPPT),并保持异步电机的V/f比为恒值。系统将MPPT和逆变器相结合,利用ASIPM模块自带的故障检测功能进行检测和保护,结构简单,控制方便。
1.2.1 DC/DC升压电路简述
1.2.1.1主电路选择
对于中小功率的光伏水泵来说,光伏阵列电压大都是低压(24v、36v、48V),对于升压主电路的选择,人们一般选择推挽电路,因为推挽电路变压器原边工作电压就是直流侧输入电压,同时驱动不需隔离,因此比较适合输入电压较低的场合。但是偏磁问题是制约其应用的一大不利因素,功率管的参数差异和变压器的绕制工艺都有可能使推挽电路工作在一种不稳定状态。基于诸多因素的考虑,本系统用了结构新颖的推挽正激电路,此电路拓扑不仅克服了偏磁问题,而且闭环控制也比较容易(二阶系统)。
1.2.l.2推挽正激电路简单分析
推挽正激电路如图2所示,由功率管S1及S2,电容C8和变压器T组成,变压器T原边绕组N1及N2具有相同的匝数,同名端如图2所示。当S1及S2同时关断的时候,电容C8两端电压下正上负,且等于阵列电压,当S1开通,S1、N2和光伏阵列构成回路,N2上正下负,同时C8、N1和S1构成回路,C8放电,N1下正上负,此时的工作相当于两个正激变换器的并联。......
系统设计的关键点和难点/P
P 既然BLDC有很多优点,人们当然有理由将其应用到高尔夫球车这类微型车当中去,但为什么世面上现有的电动高尔夫球车均用传统直流电机呢?答案或许很多,有两点却始终跑不掉,那就是成本和可靠性。先说成本,具有相近参数的BLDC比传统直流电机价格高,主要是永磁体贵,不过现在永磁体的价格呈下降的趋势[3];他励直流电机的驱动要求主电路为三个桥臂,但有两个桥臂位于励磁回路,容量较小,而BLDC的驱动要求主电路为三相桥式驱动电路,它们身上均流过电枢电流,这大大增加了功率开关器件的投入。再说可靠性,用霍尔位置传感器来检测电机转子位置以指导功率器件进行适当的换相,成本低,检测电路简单,但可靠性低[4]。当然,即便用其他类型的传感器可靠性也高不到哪去,个人认为这跟传统直流电机的电刷和换向器一样让人头痛。这些问题怎么解决,以及一些其他电机驱动系统都具有的共性问题,我在下面的内容中进行阐述。/P
P 较低的电压等级带来应对大电流的挑战/P
P 在设计的最大功率下功率开关器件处理的电流峰值将达到100A。大电流将对因器件布置所带来的寄生参数、分布电感等问题提出严苛的要求,当然还有散热。同等情况下,BLDC的驱动需要更多的功率开关器件,但我们仍然希望能不增加控制器的体积。由于成本所限,不可能用性能优良但价格昂贵的集成或智能功率器件(IPM),唯一可能的是尽力改善散热条件以减少功率MOET的数量。在这里我们引进了一种称为“铝基覆铜板”的散热方式[5],灵感来源于IPM,在这类功率器件中,功率晶元甚至没有进行封装就直接表面贴装在铝基板上。接着我们还发现它在高强度LED光源、汽车点火系统等场合也多有应用。通过用该散热方式,我们成功将原本七个一组并联减少到三个一组并联,效果让人欣喜。用表面贴装的方式,功率开关器件的引脚寄生电感也可大大缩小,可谓一举两得。/P
P 关于多管并联的均流问题,利用最差状态[6][7](Worst Case)方法对多管并联的稳态均流问题进行分析,我们以此来确定多管并联时所取的降额因子;但影响动态均流问题的因素过多,不便分析,从统计角度来分析多参数的影响是一个值得思考的方向。br力矩控制策略带来“闭环失效”问题/P
P 用力矩控 制策略来实现高尔夫球车驱动系统的控制,优点有很多诸如起动转矩大、响应迅速、限流效果好等。但力矩控制策略带来“闭环失效[8]” 问题:由于设计的驱动系统具有一倍的过载能力,当负载力矩始终无法达到油门踏板给定力矩时,油门踏板踏位处于负载力矩值与最大给定力矩值之间的任何变动不会对车辆的运行状态造成丝毫的改变。这与传统内燃汽车的驱动响应相异。 /P
Pbr 在大量的实际调试中,我们小组总结出了一种行之有效的方法:这个思路非常简单,即让油门踏板踏位不仅对应力矩的给定量,还将与电机绕组最大给定线电压相对应。此时,油门踏板踏位的任何改变必然导致最大给定线电压的改变也必然将改变电机的转速。这可以从无刷直流电机的调压调速特性得出。这里我称其为“最大力矩控制策略”。对应不同类型的电机,该策略可能要做必要的调整
简单而新颖的无位置传感策略在全速度范围内寻找一种可靠的低成本的无位置传感器位置获取策略显得非常重要。得益于永磁无刷直流电机的工作特性——只需要离散的位置信号,以及相绕组之间的互感耦合效应,我们研究小组已经开发出一种称之为“间接电感法”的无位置传感器算法。通过分析我们发现在互感耦合效应会导致PWM调制的有效和无效期间相端电压的差与转子位置成一固定的关系。理论上分析,只要电压传感器件的精度达到要求,都可以得到可靠的位置信息。在低速范围内,这种方法显得更为有效,可以有效弥补反电动势法的不足以获得全速度范围内的转子位置信息。由于进度上的关系,该方法在本设计中没有体现,目前该策略的算法实现还在有条不紊的进行。br br Microchip芯片的特点及其在项目中的应用/P
主控制芯片是控制系统的核心,它提供给逆变器驱动信号、对功率驱动保护进行处理、实时样转换电流等模拟信号、集位置信号、通过开关量输入输出接收外部信息或者对外部进行控制、通过CAN总线与外部其它系统交换信息、对各种信息进行分析处理、协调各部分的工作等 本设计所描述的电动高尔夫球车永磁无刷直流电机驱动系统用的主控制芯片dsPIC30F4011即来自司,它专为电机控制领域设计。dsPIC30F芯片被称为具有DSP功能的MCU,既具有控制功能强,而又有DSP的数字信号处理强的特点,这些特点使它比一般的DSP硬件开发电路更简单更便宜,而比同档的单片机更能适应数字信号处理的要求。在控制器的设计中,主要使用了芯片的如下模块
下一篇:华为Y500_华为y500